Welcome!!

- While you are waiting........
- Count out 150 matchsticks
- Use loom bands to make a few bundles of 10
- Don't bundle up all the matchsticks-you will need some loose ones as well

Bracknell Forest Community Learning Team

Bringing learning to life

Heather Williams

Heather-L.Williams@bracknell-forest.gov.uk

Session outline

Parent prep:

- to know why using real objects ('concrete') in maths is vital
- addition with matchsticks - learn how to do the partitioning method with your child
- using games for Mastery: Criss-cross addition /Double digit dabble

Activities with the children (30-40 mins, which is the length of an average lesson)

The children return to class

Summary and evaluation

Unique Chid

" No brain is the same; no brain is the best. Each brain finds its own special way"
Psychiatrist Edward Hallowell.

Unique Adult

It's good to share 目

Your well-being matters too

"Nothing matters more than stopping, listening and responding positively to young children"
Julie Fisher, Education Adviser, Oxford Brookes University

Meaningful interaction

Give time Engage Listen Respond

Interactions are profoundly important for supporting and extending children's learning. Regular meaningful interactions can help develop children's skills in thinking, reasoning, explaining, persuading and language development.

Your mission, should you choose to accept it, is to be a coach, not an instructor:

- Use open questions/make supportive suggestions for your child to consider
- Encourage your child to tell you/show you how they would do it.
- Allow them to explore and try out their ideas

How would you........?
What do you think about?
Can you show me.........?
So what problem/sum are you trying to solve? How can we check that..........?

What can we use to help us?
How about trying

Curriculum overview

Addition \& Subtraction elements for Year 2 \& Year 3

Statutory requirements

Pupils should be taught to:

- solve problems with addition and subtraction:
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Number - addition and subtraction

Statutory requirements

Pupils should be taught to:

- add and subtract numbers mentally, including:
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers

Year 3

- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

More curriculum information?

https://primarysite-
prod.s3.amazonaws.com/uploads/d6 6d612d6ee34712bc6f6572b0787afb /6edc/Parents Complete Guide.pdf
https://www.schoolguide.co.uk/blog/t he-new-primary-national-curriculum-a-parents-guide

Maths Mastery

- Emphasis on depth and breadth, not speed and acceleration.
"Children should be challenged with reasoning and problem solving activities that apply knowledge and make connections,
before moving on to new content"
(e.g. Criss-Cross/Do-or-Die games)
- Children's learning experiences are deep and rich
- Develops confident \& competent mathematicians
(Find out more about maths mastery here)
Using concrete (real objects) helps children's mastery of maths

Practical experience with real objects is essential:

- Thorough understanding of calculation processes
- Visual representations support recall of number facts

Why practical means proglress

"The importance of concrete"
(NCETM video 'Using resources to Improve fiuency and understandling') httos://www.youtube,com/w atch? $\mathrm{v}=\mathrm{HGK} 8 \mathrm{~F} 6 \mathrm{rRoPg}$

Today, concrete = matchsticks ©

Addition (small numbers) e.g. $9+8=$
 $$
9+8+4=
$$

Children may be able to complete these sums in their heads but checking/confirming answers using the matchsticks is never a bad thing.

Game 1:

Criss cross addition - 3 in a row

** recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100

CRISS CROSS THREE - ADDITION

Equipment:
Red and blue counters (or similar), calculator

- Player 1 uses a pair of (blue) numbers from the list to write an addition sum on their paper/whiteboard. They then need to complete the sum, using their straws to help if needed. (They
- If the answer is on the grid they can cover it with one of this
- Player 2 then does the same.
- Players take it in turns to choose pairs of numbers and cover squares on the grid. Once a square has
- been covered it cannot be covered again.
- The winner is the first person to put three counters in a row, across, down or diagonally.
$7.3 \boxed{5} 8696$

13	10	9
12	17	15
16	14	11

A chance to get your child familiar with how to play the game

A chance to build confidence, speed and fluency with addition facts to 20 (use the matchsticks to check answers)

A chance to have fun and be competitive

A chance to explore game strategy and use 'HOTS' (higher order thinking skills**)

Children like to win.......

- Once they know the game they will work strategically - "Which number do I need to find to complete my row of 3?"
* The first time you play, follow the game instructions as written down, choosing pairs of numbers randomly
* The second time you play, if your child starts to plan ahead, go with it

Today, concrete = matchsticks ©

Addition with larger (double digit) numbers e.g.
$23+18=?$

Partitioning method - use matchsticks

 to model place valuePartition 2 digit numbers

22	36	84	42
20	2		

Partitioning 23 into 2 'tens' and 3 'ones'

Partitioning method: $23+18=$

- Partition 23 into tens and 'ones' (2 bundles of 10 and 3 'ones')
- Partition 18 into tens and 'ones' (1 bundle of 10 and 8 'ones')
- Put the tens together
- Put the ones together (what do you notice about the 'ones'?)

There are 11 ones, so these can be 're-partitioned' into 1 'ten' and 1 'one' - the ten is moved into the tens column

Standard written method (column addition)

Matchsticks give a vital CONCRETE picture of why standard written methods work.

Game 2:

Criss cross addition - 4 in a row

**add and subtract numbers using concrete objects, pictorial representations and mentally, including:

- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers

A chance to use the matchstick partitioning method to tackle harder additions

A chance to build confidence and understanding of the addition process using double digit numbers

A chance to have fun and be competitive

A chance to explore game strategy and use some higher order thinking skills**

Step 5 - invent your own version of Criss Cross

Use the blank templates provided - can you make a 'Criss Cross' game of your own?

How about practising subtraction facts?
(e.g. choose pairs of numbers to make a subtraction sum)

How about practising multiplication facts?
(e.g. use a selection of single digit numbers to make double digit products.)
*I have examples, please ask

Step 6 - Try other games and investigations to build mastery

Number Detective

Follow the clues to find the mystery number from the list below.

The number has two digits.

- Both digits are even.
- The digit in the tens place is greater that the digit in the ones place.
- The ones digit is not in the three times table.
- The tens digit is not double the ones digit.
- The sum of the two digits is a multiple of five.

Maths worksheets from urbrainy.som
UR

Starter

Find a route through the maze from the IN to the OUT without going through any hexagon twice.

18	86
6 Beads	

If you put three beads onto a tens/units abacus you could make the numbers $3,30,12$ or 21

Explore the numbers you can make using six beads.

This may seem a very simple activity - but children need to use logic and work systematically to complete it (very important skills in maths)
Stretch \& Challenge?
Introduce further place value columns
Use more than 6 beads (but not too many or you'll be here all day..... ;-)

Handy help sheet

Step 1- Play Criss Cross three-
boilding apeed and fleercy with addition facta to 20
*Read the gave inernatiaue with your child
Get 5 estrierv eash a decise wh: sil go fire

- Choure a par of ble rumbers bow

Ahd the 2 rurbere together - if
ooner it upl
Wirner is the five perase to
get inarse
The cin is fo get uned to ploging
the gene erd teve fun bulding
odelitian fact floescy

\qquad

| 13 | 10 | 9 |
| :--- | :--- | :--- | | 12 | 17 | 15 |
| :--- | :--- | :--- | :--- |
| 15 | 14 | 11 | $\left.\begin{array}{lll}12 & 17 & 15 \\ 16 & 14 & 11\end{array} \right\rvert\,$

Step 2-Play Criss Cross three again

but encouroge them to be strategic...

Aa your child geta used to playing the 'Crias-Crear' game,

they may begin to think aread__yeu can perompt then by
askingt
 mo conpletes row of 3 er oss that tlock
ov frem divg the reme)

Which 2 Nipprerignt you De ctic to uke

Hew revey (notchetikha) do you seed to add to reach the tavert? Ir that rumber anallatie? (cheok the blour) $(-\mid D):|0| 3|1| 4$

Step 3- Play Criss Cross fourdoable dight adifition wing piace vale ans partitiaring

- Get 8 counters oach
- Take it in turra to chocse pairs of blue numbers
- Add the 2 numbers using the matchatick partitioning method -if the enswer is on the board you can cover it up?
- Winnar is the first person to got 4 in a row

Step 4- Play Criss Cross four again

but encourage them to be strategic

- 'Which murber do ysu mant to corer up ${ }^{\prime}$ E.g. 37
- Which 2 mutbera night you be able to uxe to get there?
${ }^{\circ}$ ffer further gyout:
- Chasse ablue nenber that's leSs than 37 (why?)
$*$ higher level thinking- are there any bhe nurbers that we on diwcant revaight angy becaus they ave more thon, ar very cloas
to the torget nerber to, the target nurber?

- Chivi connts at cheir choven nevter of matchatick
- How nary nare (matchriken) do you reed to reach the torget of 377

Step 5 - invent your own version of Criss Cross

Use the blank templates provided - can you make a 'Criss Cross' gane of your own?

How about practising subtraction facts?
(e.g. choose pairs of numbers to moke a subtraction sum)

How about practising multiplication facts? (e.g. use a selection of singie digit numbers to moke double digit products.)
*I hove examples, please ask

Step 6 - Try other games and investigations to build mastery

Alternative game:

"Double Digit Dabble"

PLEASE READ THE INSTRUCTIONS TO MAKE \& PLAY

OPTION 1 - NUMBERS GIVEN

Fancy a challenge?-try the "Do or Die" game....

Mathematics Games
 www.mathsphere.co.uk
 Do or Die (addition)
 Equipment:
 A die or spinner A scoring sheet is useful

Rules:

This is a game for two or more people, although usually played in pairs. It is good practice for mental addition skills up to 50 (especially adding 3 or more small numbers)

The first player rolls the die as many times as s/he likes, recording each score and adding up the total as s / he goes.

The player may stop at any time and put his/her score in the bank the 'banked' score can then be added to the running total.

If, however, a 1 is thrown, all the score for that round is lost and the running total remains the same.

When a score has been 'banked' the die is passed to the next player who has her/his turn.

The winner is the first person to reach 50

Make it harder:

- Raise the winning score to 100 or more. To speed things up, you could double the score for each roll of the die. (throw a 4, double it to 8)
- Use a 0-9 die or spinner with 2 losing options (e.g. 1 \& 9)
- Killer version: 0-9 die or spinner AND multiply each spin score by

10 (you will need to raise the winning score as well)

Tell us what you think);

Time for the tiddly peeps......

Remember your mission ().

How would you........?

What do you think about?
Can you show me.........?
So what problem/sum are you trying to solve?
How can we check that.........?
What can we use to help us?
How about trying

Don't struggle on if concentration is wearing thin - grab another game/activity to try

More ideas for later

- Take a look at the following slides at home, there's plenty more you can do with your matchsticks.............

Take groups of objects (matchsticks if you like!!) and......

- sort into pairs/groups of 5/groups of 10...... and use to practice counting in twos, fives, tens......
- arrange objects in rows and columns (arrays) to make counting in $2 s, 5 s$....easier - lego is great for this
- start with a certain number of things and find out how many groups of $2 / 3$...... you can get from it
e.g. how many groups of 3 can you make with your 12 superhero figures.....?
- start with a certain number of things and share them between 2, 5
e.g. can you share your 12 superhero figures equally between 2 people.....?

Multiplication \& times tables

 -making arrays \& counting in 'groups of'

Gordon has 33 candles. He puts 5 on each cake.
How many cakes will have 5 candles on?
$33 \div 5=$?
How many will be left?

grouping

The road to understanding......

Concrete (real objects)

Models (pictorial representations)

Abstract (written methods)

MODELS:

Add and subtract using 'base 10' images Dienes, place value disks, coins.......

Find $148+276$

First, lay out all of the place value blocks
\square

https://www.ictgames.com /mobilePage/addition.html online game using a Dienes - style model.

Pictorial representations: e.g. empty number lines

Questions
$21+32=$
$43+24=$
Using a blank to the answer.

- https://www.youtube.com/watch?v=zox5cJufy70

Video link showing addition using an empty number line

- https://www.youtube.com/watch?v=WnIEZuKIN58

Video link showing subtraction using an empty number line

Looking ahead to Key Stage 2 written methods for addition

https://www.youtube.com/watch?v=KVi3FFFGKKM

- Video link showing addition using partitioning
https://www.youtube.com/watch?v=gdT3v2PA08I
- Video link showing column addition with partitioning
https://www.youtube.com/watch?v=vaxUcsDtV-Q
- Video link showing column addition, formal (standard) written method

Looking ahead to Key Stage 2..... subtraction methods

https://vimeo.com/70096846

- Video link showing partitioning methods for subtraction
https://vimeo.com/70316059
- Video link showing different subtraction strategies
https://vimeo.com/70316060
- Video link showing development of column subtraction

Here are some great online resources to try

1. Information about reading writing \& saying big numbers http://www.englishlessonsbrighton.co.uk/saying-large-numbers-english/
2. Comparing numbers - scroll down homepage until you see the 'Compare Numbers activity
http://www.crickweb.co.uk/ks2numeracy-calculation.html
3. General calculation practice http://www.bbc.co.uk/education/subjects/zjxhfg8 http://www.softschools.com/math/games/ https://www.coolmathgames.com/1-number-games
4. Word Problems/problem solving (mastery)
https://uk.ixl.com/math/year-2/addition-word-problems-up-to-two-digits https://uk.ixl.com/math/year-2/subtraction-word-problems-up-to-twodigits
https://urbrainy.com/maths/year-2-age-6-7/challenges-for-year-2
5. Place value practice http://www.softschools.com/math/place_value/teaching_place_value/ http://www.softschools.com/quizzes/math/place_value_and_expanded_no tation/quiz677.html

https://www.stem.org.uk/elibrary/resource/28180 https://nrich.maths.org/8940
.......... and for Yr3 and beyond, try
https://nrich.maths.org/8958

Place value explained
 https://www.theschoolrun.com/what-place-value

We count using a 'decimal' column system [remember "hundreds, tens, units"?] We use the same 10 digits but their value varies depending on which column they are in.
"place value" describes the value of any digit in a number - for example in 48 , the 4 is worth 40 [4 tens]
Throughout Key Stage 1, children have been developing their understanding of the place value system
(where the value of a digit depends upon its position in a number)

Children learn to:
Identify tens and ones, (hundreds tens \& ones), in a number
Recognise/state the value of any digit in a number Partition numbers into tens and ones (hundreds, tens, ones)

* An understanding of place value is essential when learning to add and subtract bigger numbers
* Concrete experience of tens \& ones (hundreds, tens \& ones, and so on) is provided as they learn calculation processes
* Deep understanding of written methods is achieved by experiences with 'concrete'

